AS Further Mathematics Unit 2: Further Statistics A General instructions for marking GCE Mathematics

1. The mark scheme should be applied precisely and no departure made from it. Marks should be awarded directly as indicated and no further subdivision made.

2. <u>Marking Abbreviations</u>

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only

MR = misread

PA = premature approximation

- bod = benefit of doubt
- oe = or equivalent
- si = seen or implied

ISW = ignore subsequent working

F.T. = follow through (\checkmark indicates correct working following an error and \checkmark indicates a further error has been made)

Anything given in brackets in the marking scheme is expected but, not required, to gain credit.

3. <u>Premature Approximation</u>

A candidate who approximates prematurely and then proceeds correctly to a final answer loses 1 mark as directed by the Principal Examiner.

4. <u>Misreads</u>

When the <u>data</u> of a question is misread in such a way as not to alter the aim or difficulty of a question, follow through the working and allot marks for the candidates' answers as on the scheme using the new data.

This is only applicable if a wrong value, is used consistently throughout a solution; if the correct value appears anywhere, the solution is not classed as MR (but may, of course, still earn other marks).

5. <u>Marking codes</u>

- 'M' marks are awarded for any correct method applied to appropriate working, even though a numerical error may be involved. Once earned they cannot be lost.
- 'm' marks are dependant method marks. They are only given if the relevant previous 'M' mark has been earned.
- 'A' marks are given for a numerically correct stage, for a correct result or for an answer lying within a specified range. They are only given if the relevant M/m mark has been earned either explicitly or by inference from the correct answer.
- 'B' marks are independent of method and are usually awarded for an accurate result or statement.
- 'S' marks are awarded for strategy
- 'E' marks are awarded for explanation
- 'U' marks are awarded for units
- 'P' marks are awarded for plotting points
- 'C' marks are awarded for drawing curves

AS Further Mathematics Unit 2: Further Statistics A Solutions and Mark Scheme

Qu. No.	Solution	Mark	AO	Notes
1.(a)	E(W) = E(X)E(Y) = 168	B1	AO1	
(b)	$E(X^{2}) = (E(X))^{2} + Var(X)$ = 221 $E(Y^{2}) = 153$ $Var(W) = E(W^{2}) - [E(W)]^{2}$	M1 A1 A1	AO1 AO1 AO1	
	$= E(X^{2})E(Y^{2}) - (E(X)E(Y))^{2}$ = 221×153-168 ² (=5589) SD = 74.8 (74.75961)	M1 A1 A1 [7]	AO3 AO1 AO1	
2(a)	$E(T) = \frac{1}{2500} \int_{0}^{10} t^2 (100 - t^2) dt$	M1	AO3	
	$=\frac{1}{2500}\left[\frac{100t^{3}}{3}-\frac{t^{5}}{5}\right]_{0}^{10}$	A1	AO1	
	= 5.33(333)	A1	AO1	
(b)(i)	$F(t) = \frac{1}{2500} \int_{0}^{t} u(100 - u^{2}) \mathrm{d}u$	M1	AO3	
	$=\frac{1}{2500}\left[50u^2 - \frac{u^4}{4}\right]_0^t$	A1	AO1	
	$=\frac{1}{2500}\left(50t^2-\frac{t^4}{4}\right)$ (for	A1	AO1	
	$0 \le t \le 10) = 1 \text{ for } t > 10 (F(t) = 0 \text{ for } t < 0)$	B1	AO1	Allow omission of $t < 0$
(ii)	P(T > 5) = 1 - F(5) = 0.563 (0.5625)	M1 A1	AO3 AO1	
(iii)	The median <i>m</i> satisfies $F(m) = 0.5$ $m^4 - 200m^2 + 5000 = 0$	M1 A1	AO3 AO3	
	$m^2 = \frac{200 \pm \sqrt{40000 - 20000}}{2}$	A1	AO1	
	(= 29.289) m = 5.41(1961)	A1 [13]	AO1	

Qu. No.	Solution	Mark	AO	Notes
3(a)	S A B C D E F G H H 3 6 1 8 7 2 4 5 G 5 6 4 3 8 2 7 1	M1 A1 A1	AO3 AO1 AO1	Attempt to find ranks Correct values for 1 st row Correct values for 2 nd row
	$\sum d^2 = 64$	B1	AO1	
	$r_s = 1 - \frac{6 \times 64}{8 \times 63}$	M1	AO1	
	= 0.238(095238)	A1	AO1	
(b)	5% 1-tail crit value = 0.6429	B1	AO1	
	association between marks in History and marks in Geography.	B1	AO3	
(c)	Because the data might not follow a bivariate normal distribution.	B1 [9]	AO2	
4(a)	The evidence suggests that good graduate prospects are associated with: strong research quality high entry standards.	B1 B1	AO2 AO2	Or The evidence suggests that good graduate prospects are not associated with student satisfaction
(b)	Gradient = $\frac{122.72}{2}$	M1	AO2	
	= 1.0542 = 116.4(105)	A1	AO1	
	Intercept = $\frac{2522}{7} - 116.4105 \times \frac{22.24}{7}$ = -9.5(67) y = 116.4(105) x - 9.5(67)	M1 A1 B1	AO2 AO1 AO1	Allow for using 116.4 giving - 9.5(337) FT 'their' gradient and intercept
(c)	116.4 × 3 – 9.6 = 339.6	M1 A1	AO3 AO1	Accept 358.7(988) if using exact
		[9]		values throughout

GCE AS and A LEVEL FURTHER MATHEMATICS Sample Assessment Materials 23

Qu. No.	Solution	Mark	AO	Notes
5(a)	H_0 : The data can be modelled by the Poisson distribution with mean 2. H_1 : The data cannot be modelled by the Poisson distribution with mean 2.	B1	AO3	
(b)	The expected frequencies are Goals 0 1 2 3 4 or more Scored - - - 8 Obs 6 11 15 10 8 Exp 6.767 13.534 13.534 9.022 7.144	B1 B1	AO3 AO3	For at least 1 correct For all correct
	Use of χ^2 stat = $\sum \frac{O^2}{E} - N$	M1	AO3	
	$= \frac{6^2}{6767} + \frac{11^2}{13534} + \dots + \frac{8^2}{7144} - 50$	A1	AO2	
	= 0.93 $DF = 4$ $5% crit val = 9.488$ Since 0.93 < 9.488 (Accept H ₀) We conclude that the data can be modelled by the Poisson distribution with mean 2	A1 B1 B1 B1 B1	AO1 AO1 AO1 AO2 AO3	
		[10]		
6(a)	The number of arrivals X is Poi(7.5) $P(X = 5) = \frac{e^{-7.5} \times 7.5^5}{5!}$ $= 0.109(3745)$	B1 M1 A1	AO3 AO1 AO1	Or straight from the calculator
(b)(i)	P(T > t) = P(No customers arrive between 11am and t mins after 11am) $= e^{-0.5t}$	B1	AO2	
(ii)	The cumulative distribution function of <i>T</i> is $F(t) = P(T < t)$	M1	AO3	
	$= 1 - P(T > t) = 1 - e^{-0.5t}$	A1	AO2	
	Let $f(t)$ denote the probability density function of T			
	f(t) = F'(t) = 0.5e ^{-0.5t}	M1 A1	AO2 AO1	
(iii)	This is the exponential distribution. Therefore mean = standard deviation = $1/0.5 = 2$	B1 B1 [10]	AO2 AO2	

GCE AS and A LEVEL FURTHER MATHEMATICS Sample Assessment Materials 24

Qu. No.	Solution	Mark	AO	Notes
7(a)(i)	H ₀ : There is no association between parents knowing their child's social media passwords and age of child H ₁ : There is an association between parents knowing their child's social media passwords and age of child	B1	AO3	Or H_0 : Parents knowing their child's social media passwords is independent of age H_1 : Parents knowing their child's social media passwords is not independent of age
(ii)	Age (years) Age (years) Parent knows 13 14 15 password 78.71 76.50 99.29 96.50			
	$142 \times \frac{275}{493} = 79.21$ OR $275 \times \frac{142}{493} = 79.21$	M1 A1	AO2 AO1	Or any equivalent correct method
(iii)	Chi-squared contributionsAge (years)Parent knows131415password131415Yes2.7790.1751.180No2.2030.1390.935	M1 A1	AO2 AO1	M1A0 for one correct χ^2 contribution FT 'their observed values'
(iv)	2 degrees of freedom from $(3 - 1) \times (2 - 1)$	B1	AO1	
(v)	Since <i>p</i> -value < 0.05, Reject H_0	B1 B1	AO1 AO2	B1 for < 0.05 B1 for Reject H ₀
	Strong evidence to suggest there is an association between parents knowing their child's social media passwords and age	B1 B1	AO2 AO3	B1 for strong evidence B1 for relating back to hypothesis
(b)	Largest contribution for 13-year-olds especially for yes It seems more parents than expected know passwords for their 13-year-old children	E1 E1	AO2 AO2	
		[12]		